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Summary. The static structure factors of periodic systems have been deduced from
ab initio Hartree—Fock calculations. Taking into account atomic thermal motions,
dynamic structure factors at 298 K were then calculated by assuming that atomic
displacements are independent and atomic orbitals follow nuclear movements. Three
triperiodic systems have been studied: silicon, magnesium oxide and beryllium oxide.
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1 Introduction

The value of precisely determining the structure factors of a given compound is now
an established fact. They are deduced from experimental observations and can be
used for the comstruction of electron density maps, which furnish considerable
information. Inversely theoretical structure factors can be obtained by Fourier
transform of electron density. Agreement between experimentally and theoretically
determined structure factors guarantees the quality of the wave function. Conse-
quently, high quality wave functions can lead to the calculation of reliable values of
other physical properties. The CRYSTAL program [1] relies on Hartree—Fock
theory to allow the study of periodic systems [2] at 0 K temperature. To compare
theoretically determined structure factors to experimental values, theoretical results
are corrected for thermal motion via the Debye—Waller model and experimental
values are corrected for secondary effects (absorption, polarization, etc.). The theoret-
ical-experimental difference at 0 K or at a given temperature T is minimized using
a least squares method to furnish optimal thermal motion factors. The optimization
process vields results whose quality improves as the number of parameters to be
optimized is reduced, i.e. the compound is simple (mono-atomic) and the structure is
symmetrical (isotropic). In this case, the thermal motion factor is a specific diagonal
and isotropic tensor for each atom. In fully ionic compounds, e.g. MgO [3],
contributions from each ion in the expression of overall structure factor can be
separated. They can be corrected by respective thermal motion tensors, since the
projection of electron density per energy band can be unambiguously attributed to
a given ion. For non-ionic compounds, thermal motion corrections should be
obtained by using the total molecular wave function or crystalline orbital.
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The present work proposes a novel method for the calculation of dynamic
structure factors at an arbitrary temperature T, which can be used with any kind of
ab initio determined wave function.

While in the usual technique, the electron density is first divided into atomic
or ionic contributions and thermal motion is then applied independently to the
individual species, our method does not require any a priori partition.

The thermal correction is applied to couples of atomic orbitals (g, v) with which
are associated the elements of the density matrix (£,,), assuming that the latter
remain unchanged at different temperatures.

Our method has been applied to three types of crystals presenting a variety of
structure and binding type, silicon, magnesium oxide and beryllium oxide.

2 Method of calculating structure factors
Static structure factor

There exist different types of multi-photon processes when an electromagnetic
wave interacts with an electron cloud. In two-photon, high-energy elastic inter-
action processes (Thomson scattering) the ratio of scattered wave/incident wave
amplitudes, called the scattering factor, is written as

fo)= Jp(r)e“i”d% 1)

where r is the electron position, p(r) is the electron density and s is the scattering
vector.

This corresponds to the mean value (first order perturbation) of the Hamil-
tonian of two-photon interaction obtained in the Coulomb gauge [4, 5]. f(s) is
thus the Fourier transform of p ().

In the case of periodic systems, the scattering factor (1) is null, except for the
scattering vectors s that satisfy Bragg’s law. When expressed on the basis of
a crystal cell, it is called the structure factor and is noted Fy(s). In this work, the
wave function used results from a linear combination of atomic orbitals (LCAO)
Hartree-Fock ab initio calculation [2] conducted with a program that takes the
triperiodicity of the system into account (CRYSTAL [1]).

In this case, the electron density is expressed as

p(r)= Y PE ya(4,r) 15 (B, r), 2
1.8
where y) (A4, r) is the uth AO on atom A(r4) in the reference zero cell, x2(B, r) is the
vth AO on atom B(rg) in the crystal cell associated with the translation vector g,
and P§, is the corresponding element of the density matrix.

In general, each atomic orbital is developed as a linear combination of Gaus-
sian type functions (GTFs). In the following, for simplicity and without loss of
generality, we shall assume that there is only one GTF per AO.

From expressions (1) and (2), the static structure factor F(s) can be written as
follows:

Fols) = ), Pi o, (sx) 1o, (5,) o, (s2), 3)

Hwv.g
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where

+ o0
I, (50 =18 (52) =J (e —xa)'e 50 (x —xp —g, e TP e T dx, (4)
o and B are the exponents of the GTFs associated with AO u(A) and v(B).

Iy ,(s.) will be referred to as the static scattering integral and is calculated
analytlcally with the method proposed by Ferrero [6]. In this last expression, the
reference system # = (0, x, y, z) is chosen for the quantum calculation of the wave
function, and n, m are the degrees of the x polynomial that depend on the nature of
the AOs encountered (s, p, d, etc.).

Introduction of thermal motion

In order to calculate the structure factors Fp(s) at any temperature T, it is
necessary to know the mean square displacements <{u?> of the atoms in the cell.
The values of {u?} are either experimental, in most cases determined from neutron
scattering studies, or are obtained from an optimization between experimental and
theoretical structure factors.

In the context of the Debye hypothesis, the probability p(u,) of finding atom
A with a displacement u, with respect to its equilibrium position r, follows the
distribution law [7]:

detB3) T g
= —f 7 — (Y Du B uy
plus) [ o | ¢ : 5)

where B, is the tensor of mean square displacements, of which each element is
written as
By ij=<ug,itha, ) LI=Xy, 2 (6)

The values of B, are given in the crystallographic system (0, a4, 4, a5) and so
they must be transformed to the working system 4.

Crystallographers usually take thermal motion into account by, first dividing
the total electron density into atomic contributions p, (r) leading to atomic scatter-
ing factors fy 4, and then correcting them by the Debye—Waller exponential term.
In this model of independent atoms, the structure factor is written as

FDW S) Zfo A(S) e (1/2)STBAse —isery (7)

In the present work, we are proposing another way of calculating the structure
factor at temperature T Fr(s) that introduces in the mean value of the operator
¢ ~'*"" the atomic displacements # distributed with probability functions p(x). Our
method is based on the assumption that the AOs follow the movements of the
associated atoms, and that the correspondmg elements of the density matrix P§, are,
on a statistical average point of view, unchanged at the different temperatures

In the Debye hypothesis, where atoms are in mutually independent vibration, the
variables uy and uy are separated. In addition, when the thermal agitation tensors
B, and By are simultancously diagonal, which is very often the case, the expression

Fr(s) becomes easier to calculate because the coordinates uy ,, ... , Up , ... canalso
be separated. In this case, Fy(s) becomes formally identical to (3):
Fr(s)= Y, PEGIT (31T, () 1%, (5), ()

op.g
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where the integral of dynamic scattering I ,(s,) is the mean value of I8: (s<)(4)
over the displacements u, , and up ,:

+ oo + o0 1 5 1
Ig"z (Sx) _ e WD /By
’ ~w J-o (/2B 4x /27 Bg .+

+
X {J (X = X4 — Uy, )" e FETHTDT (x — xp — g — up )"

-

e~ (1/2) (5, /By i) }

_ — g — 2y
xe POk o ‘sxxdx}duA,xduB,x. 9)

The calculation of the integral (9) is shown in Appendix A. In the case of s or
p orbitals (n =0, 1; m =0, 1), it leads to

c a; n+1/2 ﬁ;c m+1/2 g

Iz, (5:) = <;> <F> Aty (19
where

v and fL—— P (1)

71+ 20B, 1+ 2BBp

1t should be also noted that the exponents o and f defined by (11) are always
less than the corresponding exponents o and 8. This shows that the effect of thermal
motion is to render GTFs more diffuse. When T — 0K, B — 0, then o, > o, . — f
and we have the expression of the static scattering integral I “g:ﬂ(sx).

When the two orbitals are centered on the same atom A, integration involves
only the displacement u, of the atom, and in this case, regardless of the type of
orbitals, we have an expression that includes the Debye-Waller term e — (/2 Bz

1%, () =10, ,(50) ¢ ~ 1D Banest, (12)
These integrals I‘g}z. ,(8)and I %, , (s) are the terms of a rectangular matrix I%.(s)

shown below in the simple case of two orbitals per cell, each described by a single
Gaussian and centered on different atoms, 4 and B.

cell 0 _
cell 0 1% ["T’},
I OTa',ﬂ' 1 oTﬁ J
Ii It
cell 1 f - f”
IT« s IT/:'./?

cell g
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It is well-known that, for s = 0, the static structure factor must coincide with the
total number of electrons enclosed in an elementary cell. At temperature T, this
number is not exactly recovered with the present method. As we shall see in the
following, this condition is nevertheless verified with a precision better than 0.1%
which is still much smaller than the agreement factors between theoretical and
experimental values.

3 Applications and results

Structure factors at 0 and 298 K were calculated with relationships (3) and (8), and
compared to the most recent experimental values, reputed to be precise since they
are corrected for systematic errors of absorption, dispersion and thermal diffuse
scattering {TDS). The compounds chosen were silicon, magnesium oxide and
beryllium oxide in order to present and discuss the results obtained with different
crystal structures and different types of bonding. The calculated values F,(s) and
Fr(s) are listed in Tables 1 (Si1), 2 (MgO) and 3 (BeO) of Appendix B and compared
with experimental findings [Fr(ref.)] in Figs. 1 (Si), 2 (MgO) and 3 (BeO), where
for each h kI reflection the relative difference [F$*'*) — FE7/F¥™ is represented
(symbol #).

As an indication, the importance of thermal correction for the structure factor
was also evaluated using the relative difference |F$**) — F§*'|/F§**”) and repre-
sented on the same figures by the symbol [].

Finally, the agreement factor

Z |F§S:alc.) _ Fgef.)l

Rkl
R= Z F(Tref.)

hil

was calculated for each compound in order to analyze the overall quality of
agreement with experimental findings.

Silicon. Silicon has a face-centered cubic structure (diamond type). The only spots
in a diffraction film are & k! of the same parity. The symmetry of the structure and
the occupation of high symmetry sites by silicon atoms explain the isotropic
character of atomic thermal motion. The value 872 Bg; = 0.4632 A2, obtained by
Spackman [8] from an optimization between calculated and experimental struc-
ture factors, was used in the present work.

The Fy(s) values obtained with our method and those calculated with the
Debye—Waller relationship (7), which is written in the case of silicon:

FPW¥(s) = Fo(s)e % Bullsin0)4? 13

are listed in columns 4 and 5 of Table 1 for the 18 reflections explored by
Spackman.

Several theoretical values of F,(s) were recently calculated by Pisani et al. [9]
using different atomic orbital basis sets describing the Si atom. The Fy(s) values
adopted in Table 1 (column 3) were calculated with Eq. (3) using the richest AO
basis set, 8-411 G**,
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Fig. 1. Silicon: variations of the expressions
[F;E:alc.) _ F;fef.)]/F;]:ef.) (‘) and [F(T?alc.) _ F:)calc,)]/F(()cach)
Y (F1]) versus sin 8/4 corresponding to the different
reflections h k1 (Table 1). F£™) and F§™°” are the dynamic
and static structure factors calculated with Eqgs (8) and (3).
- F) are the experimental values given by Spackman [8]

Furthermore, the reference values used in Fig. 1 and for the calculation of R
are those obtained with relationship (13), where the static structure factors Fy(s)
correspond to the experimental values of Spackman [§8].

Examination of Fig. 1 (symbol #) and the value R = 0.2% show that the agree-
ment with experimental data is excellent.

Magnesium oxide. Magnesium oxide has a face-centered cubic structure (NaCl
type). For the same reasons as in the case of silicon, the thermal motion of the
Mg?* and O?" ions is isotropic and results in a diagonal tensor B with three
identical components. The values adopted in the present work are

872 By,2+ = 812Bos- = 81°B = 0.336 A2,

They were obtained from the optimization between theoretical structure factors
calculated by Causa et al. [3] and experimental structure factors determined by
Lawrence [ 10]. These data were preferred to those of Sanger [11] for the reasons
discussed in [3].

Magnesium oxide is a fully ionic compound and so is treated with the model of
independent atoms: the static structure factor of each species Fy yg2+ and Fy g2- 1S
obtained by adding the electron density contributions in each energy band that are
unambiguously attributable to either magnesium or to oxygen. In these conditions,
the structure factor at T calculated with the Debye—Waller relationship (7) is

FY(s) = [Fo mg+ (8) + Fo 0o (s)] &~ 57 B0 (14)
g s

where the + and — signs are used each time reflection in direction s corresponds
to all odd hk! and all even hkl, respectively.

The terms Fg g2+ (5) and Fy o= (s) in Eq. (14) were calculated in this work using
the methodology of Causa et al. [3], but with the use of stricter calculation
conditions, identical to those used for silicon [9], and an enriched AQ basis set for
Mg and O with d polarization functions on each atom [12]. The values thus
obtained are listed in columns 3 and 4 of Table 2. In spite of these new condltlons
a very slight variation of structure factors in small angle zones ((sin #)/4 < 0.5 A~ D!
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Fig. 2. Magnesium oxide: same legend as for Si in Fig. 1.
F§™) are the experimental values given by Sanger [11].

Fig. 3. Beryllium oxide: same legend as for Si in Fig. 1.
F are the experimental values given by Vidal-Valat
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is observed. The F2V(s) values (14) are listed in column 6 of Table 2 in order to
compare them with the Fr(s) values derived with Eq. (8).

In order to compare our theoretical results to the experimental data of Sanger
[11], most numerous in small angle zones, the values in column 6 were corrected by
taking into account the phenomenon of anomalous dispersion [11]. Figure 2 and
the value of factor of agreement R = 1.74%, show that agreement is satisfactory
between our results and those of Sanger. It should be noted that five low intensity
reflections, 751,931, 933, 771 and 755 are responsible for a considerable difference
that can reach 29%. When they are not included, the value of R becomes 1.52%.
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Beryllium oxide. The choice of this compound is justified because it enables our
calculations to be extended to a hexagonal compact, anisotropic crystal structure
(wurtzite type) and to a partially covalent bond.

In a prior study [13] the structure factors F2" (s) were calculated with Eq. (7):

F?W (S) — FO (S) — e 82 B((sin 6)/1)* (15)
adopting a mean square deviation 8n2B = 0.3063 A? defined by
mp. By, + Mo Bgo
Mpe + Mo

E:

and resulting from optimization between our values calculated with expression (15)
and the experimental values of Vidal-Valat et al. [14]. The agreement factor
R = 3.7% shows that the quality of agreement is moderate, partially explained by
the large relative difference characterizing all reflections corresponding to [ = 4.

Stricter calculation conditions defined in the study of silicon and the use of
a richer atomic orbital basis set developed for the study of the elastic constants of
BeO [15] were adopted in the present work. They furnish the values of Fy(s) listed
in columns 3 and 4 of Table 3 and calculated from the methodology adopted
previously in the case of MgO.

The introduction of thermal motion requires the use of anisotropic B tensors,
involving four parameters that must be separately optimized in order to obtain the
best possible agreement with experimental findings. To avoid these numerous
calculations, the values proposed by Vidal-Valat et al. [14] were used:

87 By, 1y = 87° By, ,, = 03237 A%, 8n2By, ,, = 0.4185 A2,
812 Bo, ux = 872 Bo.,, = 02763 A%, 8n*B,,, =0.2842A2

and the F?V (s) values thus deduced from Eq. (7) are listed in column 6 of Table 3.

Figure 3 and the new value of the overall factor of agreement R = 2.3% are
a substantial improvement over prior results [13], also confirmed by the satisfying
agreement of practically all I = 4 reflections. This improvement was brought about
by including the anisotropic thermal motion tensors. These observations are
confirmed by examining the curves showing the effect of thermal agitation (symbol
1), which clearly show the existence of two branches: the lower branch corres-
ponds to the nine ! = 4 reflections. This result confirms the necessity of treating
thermal motion in BeO anisotropically.

4 Discussion and conclusion

In this work, we have calculated dynamic structure factors Fy(s) including atomic
vibrations resulting from thermal motion. We assume that the atomic orbitals
follow the motion of the corresponding nuclei while the matrix density remains
invariant. The normalization of Fr(s = 0) is an essential point to our method. In
the case of silicon (the most unfavourable case) Fy(s = 0) = 13.981 which is within
0.1% of the exact value of 14.

Our method (expression (8) of Fr(s)) was compared with the classical
Debye-Waller model (expression (7) of F2%¥(s)) which is customally used by
crystallographers to correct atomic scattering factors. The results obtained with
either of these methods are very similar, practically at the limit of the calculation
precision at large values of sin 6//.
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This result is entirely consistent in the case of ionic compounds (MgO) since
there is practically no orbital overlap and since the terms I9. ,(s) of relationship (12)
correspond to the Debye—Waller correction. '

In the case of the covalent crystal, silicon, with considerable orbital overlap,
the general situation is as if all the matrix elements I%(s) were corrected in
the same way by the Debye—Waller factor, but in the region of small values of
sing/2, which is the most affected by the valence electrons, the difference
between Fr(s) and F;"(s) is more clearly pronounced. In particular, the
difference between these two structure factors for the reflection (22 2), representing
the asphericity of the electron distribution around the silicon atom, is much
larger (1%). In addition, these calculations pertain to room temperature, i.e.
to Iow Values of mean square difference {(u*). The differences between Fr(s)
and F W(s) increase for B values one order of magnitude larger (amplitudes
of atomlc vibrations about three times higher). They lead to a deviation of
0.30% for the first three reflections and 10% for the reflection (22 2). This result
shows clearly the influence of the orbital overlap on the calculated structure
factors.

Finally, it is important to stress that our method Fy(s) is easily implemented,
and that the computation costs of the calculations is comparable to that of
the static case. In our opinion, the main advantage is that this method does
not require any prescription for subdividing the total density into atomic
contributions, which may be rather artificial in some cases. Our calculation
program relies on the matrix density P# reproduced by the CRYSTAL program,
since vibronic correction directly affects each atomic orbital in each cell g of
the crystal. Thus this method requires no intermediate step, such as the projection
of P% on energy bands E,(k) that we have also carried out in the case of MgO
and BeO for the calculations of dynamic structure factors in the Debye—Waller
model.

Appendix A

Given to calculate Eq. (9) which can be also written as

+ + + oo

—_ — 2

T,ﬁ(Sx) = J j f (X — X4 — Uy ) e 2T
[} el - 0

X(X_XB gx_qu'eﬁ(x B gx)e1Sx

alx —x4) |
2TCBA xx { < 2BA xx [uA,x o+ 1/2BA,xx
alx —x,) P
i { 2BA xx> o+ 1/ZBA xx
X { < >[ _ﬁ(x—xB~gx)]2}
278y, . 2By ) | 12Bs

p
Blx —xp—gs) |?
xexp{( ZBB ” [ BT 128, .. J }duA,xduB,xdx.

><

+
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The principal integral on x is not limited, but given the mathematical shape
of the electron functions (Gaussian), x varies within a limited domain around the
atom. As a result of this, the following variable changes can be carried out:

o ek=x) o fle—xg—g,)
A,x A, x o + I/ZBA,xx B,x B, x ﬁ + I/ZBB,xx s
where x 1s considered to be a constant.
Using the new exponents
o B
_— =2B, o, and —————— =2Bp . B,
o+ 1/2B, A B+ 1/2B; . pxch
we obtain
oo 2 ﬁ 2z is ]'
I% (s):f e~ nlx—x4) o= Bulx —xp—g) g
Feptox — o A/ 2TCBA,xx

+ o
2 ’
X j [x — x4 — g, — 2B oot (x — x4)]" €~ ix/2Base dutly

-0

1 +CX) ! !
X — J [x — Xp — gx — Up,x — 2Bpxfrlx — x5 — g) 1"

*/2nBB,xx —w

x & = Pus/2Ba B duy | dix. (A1)

Now that the two displacement variables «/, and up are separated, we have to
calculate the following integrals:

+ OCI n
J\ |:;x (x — xA) — u:‘ix:| @~ 0y 2 2By %, d“;l,x-
-

There are three cases, depending on the type of orbitals involved, the most
complicated being that of d,2 for which n = 2.

+ o o 2
J’ <_x> (x — xA)Z & — M 22/ 2B st duly .

— \ O

OC, + o0
] ;" (x — x,) J uA’x @ — ity /2By du;l,x

— o0
+
+ J e~ W MBasr du, . (A2)
— 0

The second integral is null since the function is odd in u) .. Concerning
the other two, a mathematical formula is used that involves hermitian

functions:
* oo ) 2011
Jg WZle—vw dW=( 21 ) V;lil.

We thus have for (A2):

7 2 ’
oy R o 1 «
- - +B xx
[( o ) b = x4) Ay ] R/ZBA,JUC o
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It is possible to include the three cases n = 0, 1, 2 in a single expression:

[(%) (x — x,)" +BA,xx%5(n _ 2)] 2B, am [,
04

The first term in brackets is in fact always present, for n =0 (in which
case it is equal to 1) as well as for n =1 or n = 2. Concerning the second
term, it appears only for d.. orbitals when n is equal to 2, which is why we have
added the Kronecker symbol 6(n — 2). Adding these values to expression (Al), we
obtain

+ w
IF (s¢) = j e %lx —x0)? ¢ — Bulx —xp— g,)? @™ 5%

—

X <<x_;>n+1/2 [(x — X4 + By 1x <9—(—;>1—n o(n— 2)]
o o

FN\m+1/2
X(%) |:(x_xB'"gx)m+BB,xx

x<%>l_m5(m—2)de (A3)

We have static integrals with new exponents o} and f5: 1%, s (84)-

Appendix B

Table 1. Static Fo(s) and dynamic Fy(s), F ?W(s) structure factors of silicon
calculated with Egs. (3), (8) and (7), respectively.

hil (sin 0)/4 Fy(s) Fop(s) F2¥(s)
111 0.160 10.755 10.624 10.628
220 0.260 8.640 8.371 8.374
311 0.305 8.004 7.661 7.666
222 0.319 0.217 0.20902 0.20701
400 0.368 7.465 7.009 7.011
331 0.401 7.269 6.746 6.747
422 0.451 6.730 6.123 6.125
333 0.478 6.426 5.781 5781
511 0.478 6.459 5.810 5.810
440 0.521 6.060 5.345 5.344
444 0.638 4.983 4.127 4.127
551 0.658 4815 3.942 3.940
642 0.689 4.556 3.657 3.657
800 0.737 4.187 3.258 3.256
660 0.781 3.871 2918 2918
555 0.797 3758 2.800 2.800
844 0.902 3.147 2.159 2.159
880 1.042 2.536 1.535 1.534

The computational procedure, the truncation conditions adopted for the
calculated wavefunctiogl, the atomic orbital basis set 8-411G** and the lattice
parameter a, = 5.431 A used in this study were already described by Pisani
et al. [9].
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Table 2. Magnesium oxide: same comment as for Si.

P. Azavant et al.

hkl (sin8)/4 Fy 8 Fy,0(s) Fr(s) F?w (s)
111 0.205 8.669 5.935 10.779 10.779
200 0.237 8.292 5.246 53.141 53.140
220 0.336 7.018 3.632 41.018 41.015
311 0.393 6.263 2967 12.521 12.518
222 0411 6.042 2.881 33.727 33.724
400 0.475 5.281 2.466 28.734 28.731
331 0.517 4.814 2.176 9.649 9.646
420 0.531 4.675 2.191 24.990 24,987
224 0.581 4.187 2.006 22.116 22.114
115 0.616 3.882 1.848 7.160 7.159
333 0.616 3.882 1.846 7.170 7.166
440 0.671 3.462 1777 18.015 18.013
531 0.702 3.253 1.677 5.343 5.341
600 0.712 3.189 1.701 16.503 16.501
442 0.712 3.189 1.702 16.505 16.503
620 0.750 2.961 1.642 15.239 15.238
533 0.778 2.813 1.573 4.049 4.048
226 0.787 2.768 1.592 14.166 14.165
444 0.822 2.604 1.551 13.244 13.243
711 0.847 2.496 1.501 3.130 3.129
551 0.847 2.496 1.500 3.132 3.131
640 0.855 2463 1.514 12.441 12.440
642 0.888 2342 1.481 11.736 11.735
731 0911 2.262 1.442 2481 2480
553 0911 2.262 1.442 2482 2.481
800 0.949 2.146 1.424 10.550 10.549
733 0.971 2.084 1.393 2.017 2.016
820 0.978 2.065 1.398 10.045 10.045
644 0.978 2.065 1.398 10.046 10.045
228 1.007 1.995 1.374 9.588 9.587
660 1.007 1.995 1.374 9.588 9.587
751 1.027 1.947 1.348 1.682 1.681
555 1.027 1.947 1.348 1.683 1.682
662 1.034 1.932 1.351 9.170 9.169
840 1.061 1.877 1.329 8.785 8.784
911 1.081 1.839 1.307 1.438 1.438
753 1.081 1.839 1.307 1.439 1.438
842 1.087 1.827 1.308 8.430 8.429
664 1.113 1.783 1.287 8.101 8.100
931 1.132 1.752 1.268 1.260 1.260
844 1.162 1.706 1.248 7.506 7.505
933 1.180 1.681 1.231 1.129 1.128
771 1.180 1.681 1.231 1.129 1.128
755 1.180 1.681 1.231 1.129 1.128

1000 1.186 1.673 1.229 7.236 7.235
860 1.186 1.673 1.229 7.236 7.235

1020 1.210 1.643 1.211 6.981 6.981
862 1.210 1.643 1211 6.981 6.981
951 1.227 1.622 1.195 1.030 1.029
773 1.227 1.622 1.195 1.030 1:030

1022 1.233 1.615 1.193 6.741 6.740
666 1.233 1.615 1.193 6.741 6.741

The computational procedure and truncation conditions are the same as those described
for Si. The AO basis set is given in [12] and the lattice parameter is a, = 4.215 A.



A quantum chemical method

Table 3. Beryllium oxide: same comment as for Si.

hkl (sin 0)/4 Fy 5.() Fo.0(s) Fr(s) F2V(s)
100 0216 0.924 2.973 7.689 7.691
002 0230 1.829 5.509 11.598 11.599
101 0.244 1.566 4453 6.933 6.930
102 0.315 0.848 1.979 4237 4237
110 0374 1.595 3216 9.235 9.237
103 0.407 1.328 2.506 6.714 6.716
200 0.431 0.744 1325 3.915 3.917
112 0.439 1474 2.646 5777 5,778
201 0.446 1.264 2264 3.075 3.074
004 0.460 1.435 2526 2.148 2.147
202 0.489 0.690 1.159 2527 2529
104 0.508 0672 1.130 0.896 0.896
203 0.552 1.092 1.796 4.839 4.841
210 0.571 0.614 1012 2.955 2.955
211 0.582 1.045 1.703 2197 2.196
114 0.592 1.188 1.933 1.434 1.433
105 0.614 0.995 1.636 4382 4383
212 0.615 0.573 0.940 2.000 2.000
204 0.630 0.560 0914 0.673 0.673
300 0.647 1.091 1.810 5.130 5.131
213 0.667 0916 1.529 3.937 3.938
302 0.687 1.024 1721 3.542 3.543
006 0.690 1.019 1.716 3.302 3.303
205 0.719 0.842 1.454 3.675 3.676
106 0.723 0.483 0.831 1.572 1.572
214 0.733 0475 0.818 0.630 0.629
220 0.747 0.927 1.641 4359 4359
310 0.778 0.440 0.799 2.076 2076
222 0.782 0.874 1.583 3.077 3.077
116 0.784 0.870 1.579 2.881 2.881
311 0.786 0.752 1.358 1.655 1.655
304 0.794 0.857 1.555 1.245 1244
215 0.810 0.722 1.350 3.192 3.194
312 0.811 0.416 0.774 1.475 1475
206 0813 0414 0.772 1.385 1.385
107 0.833 0.694 1314 1715 1.715
313 0.851 0.673 1312 2.963 2.964
400 0.863 0381 0.754 1.825 1.826
401 0.870 0.650 1.280 1.527 1.527
224 0.877 0.742 1.468 1.241 1.240
402 0.893 0.361 0.734 1.320 1320
216 0.895 0.360 0.732 1242 1.243
314 0.903 0.355 0.722 0.619 0.618
207 0913 0.604 1.248 1.584 1.584
008 0.920 0.689 1.454 3.248 3.250
403 0.929 0.587 1.248 2,640 2,641
320 0.940 0333 0.718 1.624 1.625
108 0.944 0.330 0.716 1.565 1.566
306 0.946 0.659 1418 2327 2328
321 0947 0.569 1221 1.429 1.429
315 0.967 0.550 1221 2.531 2.532
222 0.968 0.317 0.701 1.193 1.193
404 0.978 0311 0.691 0.613 0.612
217 0.986 0.531 1.194 1.475 1.475
410 0.988 0.611 1395 3.020 3.020
118 0.993 0.607 1.391 2913 2915
323 1.001 0.517 1.195 2375 2375

The computational procedure and truncation conditions are the same as those described
for Si. The AO basis set is given in [13, 15] and the lattice parameters are: a, = 2.677 A;
co =4.350 A; uy = 0.3774.
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